Minimal Shrinkage for Noisy Data Recovery Using Schatten-p Norm Objective

نویسندگان

  • Deguang Kong
  • Miao Zhang
  • Chris H. Q. Ding
چکیده

Noisy data recovery is an important problem in machine learning field, which has widely applications for collaborative prediction, recommendation systems, etc. One popular model is to use trace norm model for noisy data recovery. However, it is ignored that the reconstructed data could be shrank (i.e., singular values could be greatly suppressed). In this paper, we present novel noisy data recovery models, which replaces the standard rank constraint (i.e., trace norm) using Schatten-p Norm. The proposed model is attractive due to its suppression on the shrinkage of singular values at smaller parameter p. We analyze the optimal solution of proposed models, and characterize the rank of optimal solution. Efficient algorithms are presented, the convergences of which are rigorously proved. Extensive experiment results on 6 noisy datasets demonstrate the good performance of proposed minimum shrinkage models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Guarantees for Schatten-$p$ Quasi-Norm Minimization in Recovery of Low-Rank Matrices

We address some theoretical guarantees for Schatten-p quasi-norm minimization (p ∈ (0, 1]) in recovering low-rank matrices from compressed linear measurements. Firstly, using null space properties of the measuring operator, we provide a sufficient condition for exact recovery of low-rank matrices. This condition guarantees unique recovery of matrices of ranks equal or larger than what is guaran...

متن کامل

Scalable Algorithms for Tractable Schatten Quasi-Norm Minimization

The Schatten-p quasi-norm (0<p<1) is usually used to replace the standard nuclear norm in order to approximate the rank function more accurately. However, existing Schattenp quasi-norm minimization algorithms involve singular value decomposition (SVD) or eigenvalue decomposition (EVD) in each iteration, and thus may become very slow and impractical for large-scale problems. In this paper, we fi...

متن کامل

Joint Schatten p - norm and p - norm robust matrix completion for missing value recovery

The low-rank matrix completion problem is a fundamental machine learning and data mining problem with many important applications. The standard low-rank matrix completion methods relax the rank minimization problem by the trace norm minimization. However, this relaxation may make the solution seriously deviate from the original solution. Meanwhile, most completion methods minimize the squared p...

متن کامل

Weighted Schatten p-Norm Minimization for Image Denoising and Background Subtraction

Low rank matrix approximation (LRMA), which aims to recover the underlying low rank matrix from its degraded observation, has a wide range of applications in computer vision. The latest LRMA methods resort to using the nuclear norm minimization (NNM) as a convex relaxation of the nonconvex rank minimization. However, NNM tends to over-shrink the rank components and treats the different rank com...

متن کامل

A Unified Convex Surrogate for the Schatten-p Norm

The Schatten-p norm (0 < p < 1) has been widely used to replace the nuclear norm for better approximating the rank function. However, existing methods are either 1) not scalable for large scale problems due to relying on singular value decomposition (SVD) in every iteration, or 2) specific to some p values, e.g., 1/2, and 2/3. In this paper, we show that for any p, p1, and p2 > 0 satisfying 1/p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013